If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50y^2-10y=0
a = 50; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·50·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*50}=\frac{0}{100} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*50}=\frac{20}{100} =1/5 $
| 3x+28=3+6x-5 | | m^2-12m+25=-2 | | (4x+2)x=210 | | 20-5(6x-5)=-5 | | 6-9x-4=-47+3x-11 | | 36-7x=9x | | 15x-33=9x+45 | | y/0.5=120 | | x^2-3x+1.44=0 | | 0=4w2-3w-10 | | -4.8=2.33t-4.9t^2 | | 0=3y2+26y-35 | | 2/x=19/4 | | 13x-2=7x-14 | | 3x+5(x+9)-4x.X=-5 | | 3x+5(-5+9)-4x.X=-5 | | (3(x+4))/4=4x-2 | | 2-3x*7=8x+2 | | 7/35=4/y | | 9x2+12x+3=0 | | 6(2-4x)+10x=-8+21-6x | | 42=6^9x | | X+9/8=7/4+x-3/5 | | 6c-24=108 | | 25a^2+20a+4= | | 8-2z=3-z | | 4/7-1/4=3/5x | | 4/7+1/5x-1/4=4/5x | | X-5=x-7 | | 2(b+3)+2b=26, | | 2x4=8+6=14/3 | | (3v-4)(v-4)=0 |